I’ve been blogging about my experience at the Alberta Mathematics Dialogue last week, in which a group of university mathematics professors offered a critique of the K-12 math program in Alberta. My colleague, Pat, attended as well. Pat has more than 30 years experience as a teacher and consultant in Alberta. She has a BSc (math major), BEd and MEd. As a high school teacher, I can’t pretend to know a whole lot about how young children learn mathematics. Pat, however, is truly an expert in this area. I asked her if she would be willing to share a few words here, and she agreed. What follows are her words.

I’ve been an elementary teacher since 1979. It’s a designation I’ve always been proud of, even though it seems the complexity of the work is poorly understood and not always respected. For most of the past 4 years I’ve been out of my classroom, supporting Alberta teachers in the areas of mathematics and assessment. I attended the 2014 Alberta Mathematics Dialogue in Camrose on May 1.

In addition to attending the presentations examining the Alberta K-12 mathematics curriculum, I was able to join a round-table discussion at the end of the day. The presenters from the earlier sessions were there, along with other interested participants. The discussion focused again on the math curriculum – past, present and future – and its impact on mathematics learning in Alberta classrooms.

There was overwhelming agreement among the post-secondary faculty in attendance that the math skills of their students have significantly declined over past 10 or more years. This is not an area I have expertise in, but I’m willing to work under the assumption that they know what they’re talking about, and are not guilty of looking to the past with rose coloured glasses. However, almost no one in the room seemed prepared to question the causes of this perceived decline. It seemed accepted as a truth that changes to the Alberta curriculum caused the problem, and that reversing those changes would fix it.

Alberta teachers (as well as teachers in many jurisdictions around the world) have been asked to teach math through more of an inquiry approach – teaching math *through* problem-solving rather than *for* problem-solving, if you will. Teachers present problems for students to explore, and then help them use this exploration to develop an understanding of math concepts and strategies they need to move their learning forward. Personal strategies for operations are part of the equation, and a mastery of basic facts is still critical. (Even as I try to explain this in a nutshell, I sense the eye-rolling of the masses of critics who see this approach as so much hogwash. Please accept for a moment that I have some serious experience to back up my opinions.)

In my classes I have mathematically talented students who need to be challenged, as well as students whose past experiences have made them fragile, uncooperative, discouraged and hard to motivate. I need to find a way to interest all my students, sometimes almost against their will, in the problems I’m asking them to explore so they can begin to grapple with the ideas that might be useful to solve them. Once students have worked to solve a problem, sometimes unsuccessfully, they are far more likely to be interested in thinking about an approach (mine or another student’s) that might do the trick. I try to give them a need for the math I want them to learn. A hard lesson I’ve learned after many years of teaching math to elementary students: as much as I’d like to, I can’t do the understanding for my students. All I can do is my best to engage them in thinking about what I need them to think about. I have to rely on them to do the hard work of making sense of it.

It is unbelievably complex work, but an inquiry approach in my math classroom helped me and my diverse students function as a mathematics community. Without a doubt, I was a better and more successful math teacher using the current math curriculum, as well as the one before it, than I was using the 1975 mathematics curriculum (which, according to Anna Stokke of the University of Manitoba, was the last excellent math curriculum in Alberta). My students thrived under an inquiry approach.

I’m pretty sure I don’t need to lecture the mathematicians in the crowd about the difference between “correlation” and “cause and effect.” The perceived decline in math abilities is correlated with an enormous number of changes and challenges that have impacted students and teachers in Alberta schools in the past years, and the curriculum is just one of them. I find it fascinating and disturbing that critics, particularly in the media, seem so unwilling to consider the possibility that the task of improving math achievement is far more complex than it might seem at first glance (and, in my opinion, impossible to measure using a single standardized test). An easy fix like making the curriculum more rigorous or traditional or focused on basics almost certainly does not exist.

Recently, when I polled a roomful of university educated adults about their opinion of math as students, about a third of them admitted to having hated it. I fail to see this as evidence of the great success we had back in the “good old days.” Instead of blindly charging back in that direction, why don’t we take a deep breath, set aside the destructive, combative nature of the current debate, and support the work of our teachers and curriculum developers (who, believe it or not, bring essential skills and expertise to the table) in whatever way we can. The challenges we face are more than failure to memorize times tables. The world we live in is changing at a dizzying rate. Preparing our students to navigate it successfully is the most important work I can imagine.

Read Full Post »