In my post on the Alberta Math Dialogue, in which a group of Alberta university professors got together and offered their critique of our current curriculum, I mentioned that I heard some things that really offended me. Two of them aren’t even worth elaborating on (and for the record, were not uttered by a university math professor). Two of them had to do with math and I’d like to address one of them here. I’ll get to the other in my next post.

In his critique of the K-4 curriculum, Vladimir Troitsky from the University of Alberta stated

When I teach my students in calculus classes I expect them to know multiplication tables by heart. I don’t expect them to use a calculator to calculate 7 times 8 and I don’t expect them to use five strategies to calculate 7 by 8. I expect them to know 7 by 8. If they don’t they can go to work at McDonald’s and focus 21st century skill but that’s not what’s needed for university education. Maybe university education is not 21st century skill.

A math professor that I know and respect contacted me on Twitter and suggested that this McDonald’s quote is distracting and reflected only the thoughts of one person. Perhaps the discussion about precisely how it was worded is distracting, but I think the statement itself is important. Given the response it got in the room full of mathematics professors (laughter and nods of agreement), I believe it is indicative of one of the main barriers to truly productive collaboration among math professors and math educators in our current climate of mistrust.

My point in this post is that I’m not sure that all university math professors understand who it is that we teach on a day-to-day basis in our classrooms in Alberta. I’m not sure that all university math professors understand that not all of our kids learn math as quickly and easily as I assume all of them did.

There are kids in school right now across the province and across the grade levels who can not multiply 7 and 8. Twenty years (and two curricula) ago there were kids across the province and across the grade levels who could not multiply 7 and 8. Twenty years (and x curricula) from now, there will be kids across the province and across the grade levels who can not multiply 7 and 8. It’s not always the curriculum. It’s not always the teacher. Sometimes it’s the kid (and the kid’s circumstances that have nothing to do with the curriculum or teacher). Teachers can’t send them to work at McDonald’s when they’re not learning fast enough for us.

Anecdote #1: I started teaching in 1992. In one memorable exchange that year, I threw a 12th grade student’s brand new TI-81 calculator out the window (ground floor, onto grass) when he grabbed it to do a simple multiplication.

I’ve had several conversations with math professors recently and head them say things like, “In my country, everyone knew their multiplication facts.” Variations include changing “In my country” to “When I was in school” or “In 1982″ and so on. Let’s think about the peer groups of our mathematics professors, who we all agree are very smart people.

How many children in a current grade 3 class of 25 students in Alberta will go on to take post-secondary math courses? Given that roughly 24% of Canadians go to university, but that not all of those students will take math there, let’s put it at a generous 5. Of those students who take post-secondary math courses, how many go on to earn Ph.D.s in mathematics? I have no idea, but it’s got to be far less than one student per current grade 3 class. Most of these very smart math professors probably spent their grade school days in like-minded peer groups. I’m sure it’s true that everyone in their peer groups could multiply efficiently at a young age. I’m not so sure that everyone else in their class, country, grade, year or school program could multiply efficiently.

Anecdote #2: This is getting long, but let me share another anecdote. If you hate my anecdotes, skip ahead to the next paragraph. During my own grade school days, I had one math teacher who made new seating charts after every test and arranged us by grade, from highest to lowest. I loved this practice. Sheldon (not Cooper) and I competed all year for that top seat. We thought it was great. I never thought to look across the room at the bottom seats. I bet the kids sitting over there didn’t love it. I bet those kids hadn’t mastered their basic facts. I bet the seating chart had something to do with why they always offered to beat me up at the bike racks after school. I don’t know, though, because those kids weren’t in my peer group.

Back to my point, so I can wrap up. Many of our kids face challenges that are far greater than some of these math professors seem to understand. We can’t just send kids away when they struggle. We can’t blame the curriculum or their previous teachers and let them off the hook. We just do what we do. We teach the kids in front of us. We try desperately to get them through. We need to remember the words of one of my favorite principals, “The parents are sending us their best kids. They are not keeping better ones at home. Teach the ones you’ve got.” There are challenges in Alberta’s education system that I believe are more critical to address than our math curriculum. Those thoughts are for another day. Yes, we changed our curriculum. Yes, the PISA results seem to be slipping. Correlation does not imply causation.

I wish that the math professors I speak to would indicate that they understand that they see only the best and brightest graduates. When people like Dr. Bowman share with us what deficiencies he sees in those best and brightest, I listen intently and think about what I can do. These are productive and valuable conversations to me. At two different schools in which I worked, we had a math professor from the University of Alberta come to talk to the high school math department. At one of those schools, I had a math professor come and speak to my calculus students. During a session I facilitated with grade 7-12 teachers this year, I had two math professors from the local college come and talk to us. As school teachers, we listened. We changed practices that we were able to change.

I have enough respect the work that these math professors do that I actively seek out their input to help my teaching and to help my students. Comments like the McDonald’s one make me feel like I do not get the same respect back.

The vast majority of our K-12 students will not take university math. A large number of our students legitimately struggle with math. My biggest wish is that the math professors I speak to would acknowledge that I, as a math educator, might be capable of using certain pedagogical strategies to help those strugglers learn. In my experience, those strategies, which include the use of concrete and pictorial representations (the next post) are crucial to many of my students, and enhance the understanding of the strongest ones.

I’m a teacher. I like kids. I can’t write them off and tell them to go work at McDonald’s. I have to be better than that.