Feeds:
Posts
Comments

Posts Tagged ‘WCYDWT’

@dandersod posted the following video on his blog last week.

He asked, of course, What Can You Do With This?

I decided that there was a lot I could do with it, so I worked on some editing of the video, and then I rolled it out with a group of teachers this morning to see where it would go.

Before I describe the lesson, I should point out that my first edit of the video involved crossing out some of the measurements the original video contained, as well as beeping out the commentary that mentioned the measurements.  I was limited by my video editing skill, and the software I was using. It ended up being awkward and kind of annoying, so I re-did it simply by deleting the parts I had originally wanted obscured.  The new video was much cleaner, and it had the extra benefit of not being so obvious about what I wanted students to explore.  With the beeps and blocked out numbers visible in the first edit, it was painfully evident what I wanted people to find.  The second edit allows for many more directions to be taken in the exploration, and it’s not even obvious that I have deleted anything.

Here was my lesson plan.

  1. Provide each group a ruler and a 60 g bag of gummy bears.
  2. Play the question video.
  3. Ask the students what they wonder about after seeing the video.  In this edit, they will wonder about a whole bunch of things.  I’m hoping they get to, “How many small gummy bears are equivalent to the giant bear, and what are the  dimensions of the giant gummy bear?”
  4. Elicit guesses, lower bounds, and upper bounds of reasonable answers.
  5. Ask them if they need any clarification or information that might help
  6. Turn them loose.
  7. Work the room.  Help those who are struggling.  Provide extensions for those who hammered through it.
  8. Have students share their answers.  They will be all over the place here.  Those that work with the calorie count will be closest to the “right answer”.  Those that worked with the mass will be a bit farther out.
  9. Play the answer video.
  10. Discuss discrepancies.  Is it measurement error?  Problems with the calculations?  False advertising?
  11. Eat the gummy bears.

The lesson is fun, engaging, and has great curricular fit to Alberta’s Math 20-2 course in the measurement and proportional reasoning units.

At step #3 above, some members of the group I was working with really wanted to go a different direction.  Their suggestions became cool extensions for those that got done quickly.

  1. How tall is the man in the video, who is the same height as the gummy bear from 30 feet away?
  2. How many times would you have to walk around the school to burn off the giant gummy bear?

Enjoy

Read Full Post »

Thanks to this post on Dan Meyer’s blog, and an ensuing conversation between Dan and Curmudgeon, I was pointed to an article that I think would make a pretty compelling problem in Math 10C or Math 10-3 measurement.

The article describes a 17 year old driver who was given a $190 ticket for going 62 miles an hour in a 45 mile an hour zone. His parents, however, had installed a GPS system in his car to track his speed and driving habits, and they claim the GPS proves their son was only going 45 miles an hour at the time the ticket was issued. It appears to have taken two years of legal wrangling, before the ticket was finally upheld, and he had to pay the fine.  I wouldn’t tell the students that yet, though.

Here’s a link to the article: Speeding Teenager

Lesson Plan

1.  Present the problem.

Give the students the following excerpt from the article:

Shaun Malone was 17 when a Petaluma police officer pulled him over on Lakeville Highway the morning of July 4, 2007, and wrote him a ticket for going 62 mph in a 45-mph zone.

Malone, now 19, was ordered to pay a $190 fine, but his parents appealed the decision, saying data from a GPS system they installed in his car to monitor his driving proved he was not speeding.

What ensued was the longest court battle over a speeding ticket in county history.

In her five-page ruling, Commissioner Carla Bonilla noted the accuracy of the GPS system was not challenged by either side in the dispute, but rather they had different interpretations of the data.

All GPS systems in vehicles calculate speed and location, but the tracking device Malone’s parents installed in his 2000 Toyota Celica GTS downloaded the information to their computer. The system sent out a data signal every 30 seconds that reported the car’s speed, location and direction. If Malone ever hit 70 mph, his parents received an e-mail alert.

Malone was on his way to Infineon Raceway when Officer Steve Johnson said he clocked Malone’s car going 62 mph about 400 feet west of South McDowell Boulevard.

The teen’s GPS, however, pegged the car at 45 mph in virtually the same location.

At issue was the distance from the stoplight at Freitas Road — site of the first GPS “ping” that showed Malone stopped — to the second ping 30 seconds later, when he was going 45 mph. Bonilla said the distance between those two points was 1,980 feet.

2.  Ask the students to discuss the article.  In the end they will come to the question we want explored.  Was young Shaun guilty of speeding?

3.  Let them answer the question.  Have them prepare a defense for Shaun, or an argument for the prosecution.

4.  Show them the Commissioner’s conclusion, based on mathematics.

Bonilla said the distance between those two points was 1,980 feet, and the GPS data confirmed the prosecution’s contention that Malone had to have exceeded the speed limit.

“The mathematics confirm this,” she wrote.

Teacher Resource

A possible solution

An extension, eventually.

I have been attempting to contact the person mentioned in this local article, but so far he hasn’t responded to me.  Similar mathematics could prove he wasn’t driving as excessively fast as the red light camera claimed, but I would need to get a copy of his ticket to show that.

Red Light Camera

Read Full Post »

I saw this episode of Seinfeld a couple of days ago.  Now that my WCYDWT radar is finely tuned, I realized that it would be a good clip to show in a Math 10-3 class in the unit on rate and ratios.  I know it’s a little dated (who would use a Wizard now?), but it’s still one of my favorite shows.  Click on Morty to play the clip.

The one question kids need to ask will be apparent to them, but the math will be tricky for Math 10-3 students.  In the end, it’s still not a particularly compelling problem, but maybe this is a better way of presenting it to students.

Read Full Post »

This morning, as I was making my toast and about to put peanut butter on it, I was reminded of something I did early in my career in a Math 31 (Calculus) class.  It was at least 15 years ago, and way before we had digital cameras or Dan Meyer, but I think it definitely qualified as a WCYDWT.

One morning in the early 1990s, I was having peanut butter and toast, and had gotten near the bottom of the jar.  While scooping peanut butter out, I got it all over the handle of the knife, my hand, and then of course, my pants.

It occurred to me that the jar really was taller and narrower than it should be, and in a rare moment where everything came together for me, I realized that the shape of the jar was probably significant and we just happened to be working on Maximization and Minimization problems in Math 31.  Since digital cameras hadn’t been invented yet, the only multi-media artifact I could take into my classroom was the jar itself.

So I took my jar of peanut butter into class, slammed it down on the table in front of the class, ranted for about 5 minutes about how mad I was at Mr. Kraft for getting peanut butter on my hand and pants, and then told the class that we wouldn’t be doing Calculus that day, because I had to write a complaint letter to Mr. Kraft.  I sat down at my desk, and pretended to write, and hoped.  It took a couple minutes, but then it happened.  One student said something like, “Mr. Scammell, there must be a reason it is made in that shape.”  Another jumped in with, “It’s probably the shape that uses the least material but still has 1 kg of peanut butter in it.”  Then they argued for a bit, and decided on their own to figure it all out.  They measured, calculated, argued some more, and then told me to write my letter, because you could hold 1 kg of peanut butter in a container that was wider and shorter so my hand wouldn’t get peanut butter on it.

Again, I pretended to write while I waited and hoped.  And then they extended.  One kid stopped the whole thing, and said that there must be a reason it was the shape it was.  He observed that the lid was thicker than the other plastic, and therefore must cost more.  They re-ran their calculations based on an estimate that the lid cost twice as much as the other plastic, and then concluded that the shape was logical if we assumed the lid cost more.  It’s too bad that this was all done years before the internet hit our schools, or perhaps we could have quickly researched further to find out costs and contact numbers for Kraft.

I tried the Peanut Butter Rant several more times over the years, with varying degrees of success.  Some classes got right to the one important question, while others took some prompting.

Read Full Post »

Here’s a WCYDWT for Alberta’s Math 10-3 on Ratios and Rates.

This fish, a 60 pound sturgeon, was recently caught and released in a small self-contained pond on a golf course near the Red Deer River.  When local biologists heard about the catch, they decided to investigate.  They surmise he (or she) came into the pond when the river flooded five years ago, and then spent the next five years feeding happily on the stocked trout.  Since sturgeon are endangered, it was important to return him (or her) to the river, which they were able to do.

This story reminded me that about ten years ago, I was fortunate enough to be present when a team of biologists surveyed a cutthroat trout population on a remote mountain stream.  Biologists typically use a method called electroshock fishing to stun fish so they can be tagged and released. They had a boat with a generator on it and a long metal prod which they poked around in the water.  When the current got near enough to a fish, it would be momentarily stunned, and float to the surface.  The biologists then weighed, measured and tagged the fish before returning it to the stream.  Any fish that had been previously tagged had its number recorded and it was again weighed and measured.  It was a humbling experience to see that there were actually abundant numbers of fish in that stream, because I had been unable to catch any earlier that day with my fly rod, but I digress.

I have used the story of watching the biologists electroshock fish several times in my classes as a ratio problem and asked students determine the population of fish in that stream.  Sometimes I gave my students the number of fish tagged on the first day, and then the number of tagged fish caught on a second run of the same stretch of river later on.  Other times (and probably a better problem), I had my students design an experiment to predict the population of fish before providing them the actual numbers.

Red Deer Advocate story about the fisherman who first caught the fish

Red Deer Advocate story about the biologists capturing and releasing the fish back to the river

Read Full Post »

I got this idea from a teacher I marked diploma exams with a couple of years ago.  I’d love to credit him, but I can’t remember who he is.  This is a WCYTWT submission, or as I like to call it, WWDDWT (What Would Dan Do With This).  I used it with a couple of classes last year, and they really enjoyed it, but I used it poorly.  I did it at the end of a unit on Permutations and Combinations, so the students knew exactly what to do with it.  It wasn’t truly a problem, because they knew exactly how to solve it when I gave it to them.  I should have used it on day one of Permutations and Combinations, and let them invent the fundamental counting principle on their own.

Mozart’s Dice Game


Mozart is credited with creating a dice game, whereby you roll a pair of dice 16 times to select 16 measures to insert into a minuet section, and then a single die 16 times to select 16 measures to insert into a trio section.  For example, if you roll a 6 for the first measure, you consult a chart to see what measure number to insert into the first measure of your minuet, and so on.  The idea is that no matter what you roll, you always produce a minuet that fits whatever rules go along with a minuet.  This site explains it in a little better detail.  Mozart’s Dice Game.

WCYDWT

You give the students the history, and then you throw this site up on the SMART board.   Play Mozart’s Dice Game has a chart that looks like this:

The drop down menus let the students enter numbers that they roll on dice, so give the kids some dice, and let them enter their rolls.

Notice the link below the chart that says “Make Some Music!” Once the students have all entered their rolls, you click here and the newly created minuet will play.  There’s even a “Generate Score” link below the media player that lets you generate the score for the minuet they created.  My students loved this, and printed theirs off to try to play it on the piano themselves.

After the minuet plays, you tell the kids that even though this was written more than 200 years ago, you are pretty sure that nobody has heard the particular minuet the class just created ever before.  Ask them to discuss this statement.  They’ll say things like, “Why, did they lose the score until recently?” and dance around it until one kid finally asks, “How many minuets could be made in this game?”  Then you’ve got them and you let them play around with it.  They will invent the fundamental counting principal, determine that there are an incredibly large number of possible minuets, and even create their own interesting extensions.

One student even came in the next day with an iPhone app that generates minuets using Mozart’s Dice Game.  The only  problem with the app is that it only randomly generates minuets, and doesn’t allow you to enter your own rolls.

Update: March 11, 2016

My greatest fear was realized. The site I talk about above is no longer functional. Something about Midi Files, Flash players, and the like. I couldn’t get it to work in any browser.

I found a functional site. https://www.mozart-game.cz/

It randomly selects the measures to play, as highlighted below. You can play your own measures by clicking on the un-selected ones, so you could still have your students roll dice and create their own minuet, but you’d have to click your way across the chart. If you can keep time, it’s pretty easy. The vertical columns represent one roll of a pair of dice. So if the first roll was a 2, you’d play measure 96. In the screen shot below, the first roll was 3, the second roll was 6, and so on.

 

Mozart


Read Full Post »